Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pest Manag Sci ; 79(9): 3167-3176, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37022600

RESUMEN

BACKGROUND: Incompatible insect technique (IIT) is a population suppression approach based on the release of males with manipulated Wolbachia infection inducing egg inviability in wild females. We here present results of multiple field releases of incompatible ARwP males carried out in 2019 in a 2.7-ha green area within urban Rome (Italy) to assess the effect on Aedes albopictus egg viability. Data are compared with results obtained in 2018, when the approach was tested for the first time in Europe. RESULTS: An average of 4674 ARwP males were released weekly for 7 weeks, resulting in a mean ARwP:wild male ratio of 1.1:1 (versus 0.7:1 in 2018). Egg-viability dynamics in ovitraps significantly varied between treated and control sites, with an estimated overall reduction of 35% (versus 15% in 2018). The estimated proportion of females classified as mated with ARwP males was 41.8% and the viability rate of eggs laid by these females (9.5%) was on average significantly lower than that of females only mated with wild males (87.8%); however, high variability in fertility was observed. Values of ARwP male competitiveness were 0.36 and 0.73 based on the overall viability rate of eggs in ovitraps and on female fertility, respectively; thus, well above the conventional 0.2 threshold for an effective suppressive impact in the field. CONCLUSIONS: Results further support the potential of IIT as a tool to contribute to Ae. albopictus control in the urban context, stressing the need for larger field trials to evaluate the cost-efficacy of the approach in temperate regions. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Aedes , Wolbachia , Animales , Masculino , Femenino , Control de Mosquitos/métodos , Fertilidad , Italia
2.
Life Sci Space Res (Amst) ; 36: 8-17, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36682833

RESUMEN

Space exploration beyond the Low Earth Orbit requires the establishment of Bioregenerative Life Support Systems (BLSSs), which, through bioprocesses for primary resource recycling, ensure crew survival. However, the introduction of new organisms in confined space habitats must be carefully evaluated in advance to avoid unforeseen events that could compromise the mission. In this work, we have designed and built an experimental chamber, named Growing/Rearing Module (GRM), completely isolated and equipped with micro-environmental monitoring and control systems. This unit is specially intended for the study of single bioprocesses, which can be composed to design functional BLSSs. GRM can be implemented with specific devices for the biological system under study and the control of environmental parameters such as temperature, humidity, lighting and if required, pressure of gaseous components. GRM was validated in experiments of both microgreen cultivation, as a source of fresh food for astronauts, and rearing of the decomposer insect Hermetia illucens for bioconversion of organic waste. During the study of each bioprocess, the environmental and biological data were recorded, allowing to make preliminary assessments of the system efficiency. The GRM, as a completely confined environment, represents the first self-consistent unit that allows to fine-tune the optimal parameters for the operability of different bioprocesses. Furthermore, the upgradability according to the mission needs and the functional integrability of modules differently equipped are the keys to GRM versatility, representing a valuable tool for BLSSs' design.


Asunto(s)
Sistemas Ecológicos Cerrados , Vuelo Espacial , Sistemas de Manutención de la Vida , Planeta Tierra , Iluminación
3.
Parasit Vectors ; 15(1): 67, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35209944

RESUMEN

BACKGROUND: Releasing considerable numbers of radiation-sterilized males is a promising strategy to suppress mosquito vectors. However, releases may also include small percentages of biting females, which translate to non-negligible numbers when releases are large. Currently, the effects of irradiation on host-seeking and host-biting behaviors have not been exhaustively investigated. Information is also lacking regarding the effects of sterilizing treatment on the endosymbiotic bacterium Wolbachia, which is known to affect the vector competence of infected mosquitos. METHODS: To ascertain the effects of irradiation on females, the pupae of two Aedes albopictus strains, differing in their natural or artificial Wolbachia infection type, and Aedes aegypti-which is not infected by Wolbachia-were treated with various doses of X-rays and monitored for key fitness parameters and biting behavior over a period of 2 weeks. The effect of radiation on Wolbachia was investigated by quantitative polymerase chain reaction (qPCR) and fluorescence in situ hybridization (FISH) analysis. RESULTS: Partial Aedes albopictus female sterility was achieved at 28 Gy, but the number of weekly bites more than doubled compared to that of the controls. Radiation doses of 35 and 45 Gy completely inhibited progeny production but did not significantly affect the survival or flight ability of Ae. albopictus females and caused a tripling of the number of bites per female per week (compared to untreated controls). These results were also confirmed in Ae. aegypti after treatment at 50 Gy. Wolbachia density decreased significantly in 45-Gy-irradiated females, with the greatest decreases in the early irradiation group (26 ± 2-h-old pupae). Wolbachia density also decreased as adults aged. This trend was confirmed in ovaries but not in extra-ovarian tissues. FISH analysis showed a strongly reduced Wolbachia-specific fluorescence in the ovaries of 13 ± 1-day-old females. CONCLUSIONS: These results suggest that, under sterile insect technique (SIT) programs, the vector capacity of a target population could increase with the frequency of the irradiated females co-released with the sterile males due to an increased biting rate. In the context of successful suppression, the related safety issues are expected to be generally negligible, but they should be conservatively evaluated when large-scale programs relying on imperfect sexing and high overflooding release ratios are run for long periods in areas endemic for arboviral diseases. Also, the effects of irradiation on the vector competence deserve further investigation.


Asunto(s)
Aedes , Infertilidad Masculina , Wolbachia , Aedes/microbiología , Animales , Femenino , Hibridación Fluorescente in Situ , Masculino , Control de Mosquitos/métodos , Wolbachia/genética
4.
Nature ; 590(7844): E1-E2, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33536643

Asunto(s)
Aedes , Wolbachia , Animales
5.
Pest Manag Sci ; 76(4): 1324-1332, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31603613

RESUMEN

BACKGROUND: Novel tools are needed to reduce the nuisance and risk of exotic arbovirus transmission associated with the colonization of temperate regions by Aedes albopictus. The incompatible insect technique (IIT) is a population suppression approach based on cytoplasmic incompatibility between males with manipulated endosymbionts and wild females. Here, we present the results of the first field experiment in Europe to assess the capacity of an Ae. albopictus line (ARwP) deprived of its natural endosymbiont Wolbachia and transinfected with a Wolbachia strain from the mosquito Culex pipiens, to sterilize wild females. RESULTS: We released ∼ 4500 ARwP males weekly for 6 weeks in a green area within urban Rome (Italy) and carried out egg (N = 13 442), female (N = 128) and male (N = 352) collections. Egg (N = 13 783) and female (N = 48) collections were also carried out at two untreated control sites. The percentage of viable eggs during release was, on average, significantly lower in treated sites than in control sites, with the greatest difference (16%) seen after the fourth release. The ARwP to wild male ratio in the release spots between day 3 after the first ARwP male release and day 7 after the last release was, on average, 7:10. Released males survived up to 2 weeks. Approximately 30% of females collected in the release spots showed 100% sterility and 20% showed strongly reduced fertility compared with control sites. CONCLUSIONS: Results support the potential of IIT as a tool contributing to Ae. albopictus control in the urban context, and stress the need for larger field trials to evaluate the cost-efficacy of the approach in suppressing wild populations. © 2019 Society of Chemical Industry.


Asunto(s)
Aedes , Wolbachia , Animales , Femenino , Fertilidad , Italia , Masculino , Control de Mosquitos
6.
Parasit Vectors ; 11(Suppl 2): 649, 2018 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-30583743

RESUMEN

BACKGROUND: The transinfection of the endosymbiotic bacterium Wolbachia provides a method to produce functionally sterile males to be used to suppress mosquito vectors. ARwP is a wPip Wolbachia infected Aedes albopictus which exhibits a bidirectional incompatibility pattern with wild-types. We coupled a modelistic approach with laboratory experiments to test ARwP as a control tool and evaluate the possible occurrence of population replacement following the release of ARwP females in a wild-type (SANG) population. Repeated male-only releases were simulated and tested in the laboratory in comparison with releases contaminated with 1% ARwP females. Model simulations also investigated how migration affects the outcome of contaminated releases. Finally, the mean level of egg fertility and the long-term evolution of populations constituted by two Wolbachia infection types were studied by testing SANG and ARwP Ae. albopictus and performing more general model simulations. RESULTS: The model was parametrized with laboratory data and simulations were compared with results of biological trials. Small populations of ARwP males and females were theoretically and experimentally demonstrated to rapidly become extinct when released in larger SANG populations. Male-only releases at a 5:1 ratio with respect to the wild-type males led to a complete suppression of the SANG population in a few generations. Contaminated releases were efficient as well but led to population replacement in the long term, when the wild-type population approached eradication. Migration significantly contrasted this trend as a 5% population turnover was sufficient to avoid any risk of population replacement. At equal frequencies between ARwP and SANG individuals, the mean egg fertility of the overall population was more than halved and suppression was self-sustaining until one of the two infection types extinguished. CONCLUSIONS: In the case of bidirectional incompatibility patterns, the repeated release of incompatible males with small percentages of contaminant females could lead to population replacement in confined environments while it could be managed to target high efficiency and sustainability in wild-type suppression when systems are open to migration. This possibility is discussed based on various contexts and taking into consideration the possibility of integration with other control methods such as SIT and the use of larvicides.


Asunto(s)
Aedes/microbiología , Control de Mosquitos/métodos , Mosquitos Vectores/microbiología , Wolbachia/fisiología , Animales , Citoplasma/microbiología , Femenino , Fertilidad , Masculino , Regulación de la Población , Medición de Riesgo
7.
PLoS Negl Trop Dis ; 12(7): e0006626, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30020933

RESUMEN

Among the strategies targeting vector control, the exploitation of the endosymbiont Wolbachia to produce sterile males and/or invasive females with reduced vector competence seems to be promising. A new Aedes albopictus transinfection (ARwP-M) was generated by introducing wMel Wolbachia in the ARwP line which had been established previously by replacing wAlbA and wAlbB Wolbachia with the wPip strain. Various infection and fitness parameters were studied by comparing ARwP-M, ARwP and wild-type (SANG population) Ae. albopictus sharing the same genetic background. Moreover, the vector competence of ARwP-M related to chikungunya, dengue and zika viruses was evaluated in comparison with ARwP. ARwP-M showed a 100% rate of maternal inheritance of wMel and wPip Wolbachia. Survival, female fecundity and egg fertility did not show to differ between the three Ae. albopictus lines. Crosses between ARwP-M males and SANG females were fully unfertile regardless of male age while egg hatch in reverse crosses increased from 0 to about 17% with SANG males aging from 3 to 17 days. When competing with SANG males for SANG females, ARwP-M males induced a level of sterility significantly higher than that expected for an equal mating competitiveness (mean Fried index of 1.71 instead of 1). The overall Wolbachia density in ARwP-M females was about 15 fold higher than in ARwP, mostly due to the wMel infection. This feature corresponded to a strongly reduced vector competence for chikungunya and dengue viruses (in both cases, 5 and 0% rates of transmission at 14 and 21 days post infection) with respect to ARwP females. Results regarding Zika virus did not highlight significant differences between ARwP-M and ARwP. However, none of the tested ARwP-M females was capable at transmitting ZIKV. These findings are expected to promote the exploitation of Wolbachia to suppress the wild-type Ae. albopictus populations.


Asunto(s)
Aedes/microbiología , Aedes/fisiología , Control de Mosquitos/métodos , Mosquitos Vectores/microbiología , Mosquitos Vectores/fisiología , Wolbachia/fisiología , Aedes/genética , Animales , Cruzamiento , Fiebre Chikungunya/transmisión , Fiebre Chikungunya/virología , Virus Chikungunya/fisiología , Dengue/transmisión , Dengue/virología , Virus del Dengue/fisiología , Femenino , Humanos , Infertilidad , Masculino , Mosquitos Vectores/genética , Virus Zika/fisiología , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología
8.
Acta Trop ; 164: 473-481, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27784636

RESUMEN

As a part of a project aiming at the suppression of the mosquito vector Aedes albopictus, a specific Ae. albopictus line producing sterile males, ARwP, was tested for its suitability to intense rearing conditions compatible with mass production and field release. This line was developed by the Italian National Agency for New Technologies, Energy and Sustainable Economic Development thanks to the artificial infection with a heterologous Wolbachia strain, resulting in a bidirectional incompatibility pattern with wild-type Ae. albopictus. ARwP was reared under Standard Operating Procedures at the Centro Agricoltura Ambiente and compared with a wild-type strain in terms of time of pupation onset, production of male pupae in the following 24h and mechanical sexing efficacy. Mating competitiveness of ARwP males was also evaluated in comparison with irradiated wild-type males in large field enclosures. ARwP males demonstrated a significantly shorter time of pupation onset, a higher rate of production of male pupae in the following 24h and a lower percentage of residual contaminant females when applying mechanical sexing procedures. In addition, ARwP males were more efficient than wild-types in competing for wild-type females in large enclosures, thus inducing a level of sterility significantly higher than that expected for an equal mating competitiveness. These results encourage the use of this Ae. albopictus strain as suppression tool against Ae. albopictus based on considerations thoroughly discussed in the manuscript.


Asunto(s)
Aedes/fisiología , Mosquitos Vectores/fisiología , Reproducción/efectos de los fármacos , Conducta Sexual Animal/efectos de los fármacos , Wolbachia/fisiología , Animales , Femenino , Infertilidad/fisiopatología , Masculino , Pupa
9.
Curr Pharm Biotechnol ; 17(12): 1036-1042, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27455904

RESUMEN

INTRODUCTION: Development of new and improved mosquito control methods, that are economically sustainable and effective, is a critical requirement in the management of vector-borne epidemic diseases. Aedes albopictus is one of the main vectors of various important pathogens in the tropics, which now have the potential to also spread in temperate regions, owing to the environmental and climate changes in act. MATERIALS AND METHODS: We report about the isolation of steroidal saponins from Dracaena arborea by fractionation followed by column separation. The obtained fractions and/or pure compounds were tested by biological essays for their insecticidal activity against A. albopictus larvae. RESULTS: Various compounds were found to exert larvicidal effects. In specific, spiroconazole A demonstrated the best insecticidal activity, showing LT50 value of 57.23 hours at 25 ppm. DISCUSSION: We finally discuss about the value of this finding in the context of the present strategies of Integrated Mosquito Management.


Asunto(s)
Aedes , Dracaena , Insecticidas/farmacología , Control de Mosquitos/métodos , Saponinas/farmacología , Animales , Larva/efectos de los fármacos , Saponinas/aislamiento & purificación
10.
PLoS One ; 11(1): e0146834, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26765951

RESUMEN

The global expansion of Aedes albopictus together with the absence of vaccines for most of the arboviruses transmitted by this mosquito has stimulated the development of sterile-male strategies aiming at controlling disease transmission through the suppression of natural vector populations. In this context, two environmentally friendly control strategies, namely the Sterile Insect Technique (SIT) and the Wolbachia-based Incompatible Insect Technique (IIT) are currently being developed in several laboratories worldwide. So far however, there is a lack of comparative assessment of these strategies under the same controlled conditions. Here, we compared the mating capacities, i.e. insemination capacity, sterilization capacity and mating competitiveness of irradiated (35 Gy) and incompatible Ae. albopictus males at different ages and ratios under laboratory controlled conditions. Our data show that there was no significant difference in insemination capacity of irradiated and incompatible males, both male types showing lower capacities than untreated males at 1 day but recovering full capacity within 5 days following emergence. Regarding mating competitiveness trials, a global observed trend is that incompatible males tend to induce a lower hatching rate than irradiated males in cage controlled confrontations. More specifically, incompatible males were found more competitive than irradiated males in 5:1 ratio regardless of age, while irradiated males were only found more competitive than incompatible males in the 1:1 ratio at 10 days old. Overall, under the tested conditions, IIT seemed to be slightly more effective than SIT. However, considering that a single strategy will likely not be adapted to all environments, our data stimulates the need for comparative assessments of distinct strategies in up-scaled conditions in order to identify the most suitable and safe sterilizing technology to be implemented in a specific environmental setting and to identify the parameters requiring fine tuning in order to reach optimal release conditions.


Asunto(s)
Aedes/microbiología , Aedes/efectos de la radiación , Control de Mosquitos/métodos , Radiación Ionizante , Wolbachia , Animales , Femenino , Humanos , Masculino
11.
Pathog Glob Health ; 109(5): 207-20, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26369436

RESUMEN

The draft genome sequence of Italian specimens of the Asian tiger mosquito Aedes (Stegomyia) albopictus (Diptera: Culicidae) was determined using a standard NGS (next generation sequencing) approach. The size of the assembled genome is comparable to that of Aedes aegypti; the two mosquitoes are also similar as far as the high content of repetitive DNA is concerned, most of which is made up of transposable elements. Although, based on BUSCO (Benchmarking Universal Single-Copy Orthologues) analysis, the genome assembly reported here contains more than 99% of protein-coding genes, several of those are expected to be represented in the assembly in a fragmented state. We also present here the annotation of several families of genes (tRNA genes, miRNA genes, the sialome, genes involved in chromatin condensation, sex determination genes, odorant binding proteins and odorant receptors). These analyses confirm that the assembly can be used for the study of the biology of this invasive vector of disease.


Asunto(s)
Aedes/genética , Genoma de los Insectos , Análisis de Secuencia de ADN , Animales , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Italia , Masculino , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta
12.
PLoS One ; 10(3): e0121813, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25812130

RESUMEN

The mosquito Aedes albopictusi is a competent vector of harmful human pathogens, including viruses causing dengue and chikungunya. Cytoplasmic incompatibility (CI) induced by endosymbiotic Wolbachia can be used to produce functionally sterile males that can be released in the field as a suppression tool against this mosquito. Because the available sexing methods are not efficient enough to avoid unintentional release of a few transinfected females, we assessed the CI pattern in crosses between wPip Wolbachia-transinfected (ARwP) females and wild-type males of Ae. albopictus in this study. Quantitative polymerase chain reaction was used to monitor the titer of the Wolbachia strains that naturally infect Ae. albopictus, that is, wAlbA and wAlbB, in age-controlled males and females. Data were coupled with incompatibility level detected when the above-mentioned males were crossed with ARwP females. Wolbachia infection titer was also monitored in samples of wild caught males. Incompatibility level was positively correlated only with wAlbA density. Crosses between wild-type males having very low wAlbA density (<0.001 wAlbA/actin copy numbers) and ARwP females were partially fertile (CIcorr = 68.06 ± 6.20). Individuals with low wAlbA titer were frequently found among sampled wild males (30%-50% depending on the site and period). ARwP males can be as considered as a very promising tool for suppressing Ae. albopictus. However, crosses between wild males having low wAlbA density and ARwP females may be partially fertile. In the case of local establishment of the transinfected mosquito line, this occurrence may favor the replacement of the wild-type mosquitoes with the ARwP line, thus reducing the long-term efficacy of incompatible insect technique. Various alternative strategies have been discussed to prevent this risk and to exploit Wolbachia as a tool to control Ae. albopictus.


Asunto(s)
Aedes/microbiología , Wolbachia , Animales , Carga Bacteriana , Femenino , Insectos Vectores/microbiología , Masculino , Simbiosis , Wolbachia/clasificación , Wolbachia/genética
13.
Acta Trop ; 132 Suppl: S150-63, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24252486

RESUMEN

Mosquito species, members of the genera Aedes, Anopheles and Culex, are the major vectors of human pathogens including protozoa (Plasmodium sp.), filariae and of a variety of viruses (causing dengue, chikungunya, yellow fever, West Nile). There is lack of efficient methods and tools to treat many of the diseases caused by these major human pathogens, since no efficient vaccines or drugs are available; even in malaria where insecticide use and drug therapies have reduced incidence, 219 million cases still occurred in 2010. Therefore efforts are currently focused on the control of vector populations. Insecticides alone are insufficient to control mosquito populations since reduced susceptibility and even resistance is being observed more and more frequently. There is also increased concern about the toxic effects of insecticides on non-target (even beneficial) insect populations, on humans and the environment. During recent years, the role of symbionts in the biology, ecology and evolution of insect species has been well-documented and has led to suggestions that they could potentially be used as tools to control pests and therefore diseases. Wolbachia is perhaps the most renowned insect symbiont, mainly due to its ability to manipulate insect reproduction and to interfere with major human pathogens thus providing new avenues for pest control. We herein present recent achievements in the field of mosquito-Wolbachia symbiosis with an emphasis on Aedes albopictus. We also discuss how Wolbachia symbiosis can be harnessed for vector control as well as the potential to combine the sterile insect technique and Wolbachia-based approaches for the enhancement of population suppression programs.


Asunto(s)
Aedes/crecimiento & desarrollo , Aedes/microbiología , Insectos Vectores , Control de Mosquitos/métodos , Control Biológico de Vectores/métodos , Simbiosis , Wolbachia/fisiología , Animales , Wolbachia/crecimiento & desarrollo
14.
J Med Entomol ; 51(6): 1192-8, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26309306

RESUMEN

Wolbachia are maternally transmitted obligate bacteria that occur naturally in many arthropods. The phenotype observed in mosquitoes is known as cytoplasmic incompatibility (CI), which results in reduced or absent egg hatch in crosses between individuals with different infection types. Applied mosquito control strategies propose that by releasing individuals infected with a Wolbachia strain that differs from that in the natural host population, CI could be used to suppress or replace mosquito populations. Here, using tetracycline treatment and embryonic microinjection, Aedes albopictus (Skuse) was cleared of its natural Wolbachia infection and artificially infected with a Wolbachia strain originating from Aedes riversi Bohart & Ingram. Crossing experiments were carried out to determine whether CI could be observed between the artificially infected strain (UC), naturally infected (wild type), and uninfected strains of Ae. albopictus. Crosses between UC males and uninfected females resulted in no egg hatch, a classic unidirectional CI pattern. Crosses between the wild-type and UC strain also exhibited a unidirectional pattern of CI, demonstrating that the UC strain is compatible with both of the Wolbachia types that occur within Ae. albopictus and that wild-type Wolbachia infections are unable to fully rescue the UC Wolbachia type. Crosses between the UC strain and another artificially infected Ae. albopictus strain (ARwP), were bidirectionally incompatible, demonstrating that the UC strain is not compatible with all Wolbachia types. The CI patterns observed in this study were atypical and the opposite of that typically observed with superinfections.


Asunto(s)
Aedes/microbiología , Control Biológico de Vectores , Wolbachia/fisiología , Animales , Femenino , Masculino , Fenotipo , Aislamiento Reproductivo
15.
Parasit Vectors ; 5: 254, 2012 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-23146564

RESUMEN

BACKGROUND: Cytoplasmic incompatibility (CI) is induced in nature by Wolbachia bacteria, resulting in conditional male sterility. Previous research demonstrated that the two Wolbachia strains (wAlbA and wAlbB) that naturally co-infect the disease vector mosquito Aedes albopictus (Asian tiger mosquito) can be replaced with the wPip Wolbachia strain from Culex pipiens. Since Wolbachia-based vector control strategies depend upon the strength and consistency of CI, a greater understanding is needed on the CI relationships between wPip, wAlbA and wAlbB Wolbachia in Ae. albopictus. METHODS: This work consisted of a collaborative series of crosses carried out in Italy and in US to study the CI relationships between the "wPip" infected Ae. albopictus strain (ARwP) and the superinfected SR strain. The Ae. albopictus strains used in Italian tests are the wPip infected ARwP strain (ARwPIT), the superinfected SR strain and the aposymbiotic AR strain. To understand the observed pattern of CI, crossing experiments carried out in USA focused on the study of the CI relationships between ARwP (ARwPUS) and artificially-generated single infected lines, in specific HTA and HTB, harbouring only wAlbA and wAlbB Wolbachia respectively. RESULTS: The paper reports an unusual pattern of CI observed in crossing experiments between ARwP and SR lines. Specifically, ARwP males are able to induce full sterility in wild type females throughout most of their lifetime, while crosses between SR males and ARwP females become partially fertile with male aging. We demonstrated that the observed decrease in CI penetrance with SR male age, is related to the previously described decrease in Wolbachia density, in particular of the wAlbA strain, occurring in aged superinfected males. CONCLUSIONS: The results here reported support the use of the ARwP Ae. albopictus line as source of "ready-made sterile males", as an alternative to gamma radiation sterilized males, for autocidal suppression strategies against the Asian tiger mosquito. In addition, the age dependent CI weakening observed in the crosses between SR males and ARwP females simplifies the downstream efforts to preserve the genetic variability within the laboratory ARwP colonies, to date based on the antibiotic treatment of wild captured superinfected mosquitoes, also reducing the costs.


Asunto(s)
Aedes/microbiología , Insectos Vectores/microbiología , Wolbachia/fisiología , Aedes/fisiología , Factores de Edad , Animales , Cruzamientos Genéticos , Citoplasma , Femenino , Fertilidad , Interacciones Huésped-Patógeno , Humanos , Insectos Vectores/fisiología , Masculino , Óvulo , Control Biológico de Vectores/métodos , Reproducción , Factores Sexuales , Wolbachia/genética , Wolbachia/aislamiento & purificación
16.
J Med Entomol ; 47(6): 1082-91, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21175057

RESUMEN

The dispersal and survival of laboratory-reared Aedes albopictus Skuse males were investigated during the summer of 2007 in three Northern Italy urban localities by mark-release-recapture techniques. Two marking methods were compared: one group of males was dusted with fluorescent pigments on the body (FP), and the other group was obtained from a strain whose natural infection of Wolbachia had been removed (WB0). FP- and WB0-marked males were released as adults and pupae, respectively, in one fixed station at each locality. Recaptures were performed by skilled technicians, within a radius of 350 m from the release site, on days 4, 5, and 7 after the release, and the males were collected while flying around the technician's body or in swarms. Recapture rates ranged from 0.63 to 4.72% for FP males and from 2.39 to 11.05% for WB0 males. The mean distance traveled for WB0 males was significantly higher than for FP males; no difference was observed between the dispersal distance measured for the males recaptured on human host versus males recaptured while swarming. No further increase of the dispersal occurred during the postrelease period investigated (from day 4 to day 7 after release). The mean survival rate at the release was 0.51 for FP-marked males and 0.81 for WB0 males. The data obtained are discussed for their significance in planning sterile insect technique programs against Ae. albopictus.


Asunto(s)
Aedes/fisiología , Control de Mosquitos/métodos , Control Biológico de Vectores/métodos , Animales , Demografía , Italia , Longevidad , Masculino , Urbanización
17.
J Med Entomol ; 47(2): 179-87, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20380298

RESUMEN

Wolbachia is a maternally inherited endosymbiont inducing various effects in insects and other invertebrate hosts that facilitate the invasion of naive host populations. One of the effects is a form of sterility known as cytoplasmic incompatibility (CI) through which females are effectively sterilized when they mate with males harboring a different Wolbachia strain. The repeated mass release of cytoplasmically incompatible males can be a tool to suppress insect populations. Here, we attempt to infect an Aedes albopictus (Skuse) (Diptera: Culicidae) strain, artificially deprived of the natural Wolbachia infection, with a new Wolbachia strain from Culex pipiens (L.) (Diptera: Culicidae). Further experiments were designed to study the effects of the new infection on Ae. albopictus fitness and evaluate key parameters that affect infection dynamics, including CI level and maternal inheritance. Using embryonic microinjection, the new Wolbachia strain was successfully established in Ae. albopictus. Crosses demonstrated a pattern of bidirectional CI between naturally infected and transinfected individuals. Specifically, egg hatch was essentially absent (i.e., CI was very high) in all crosses between the transinfected males and females with a different infection status. Furthermore, naturally infected Ae. albopictus males were incompatible with the transinfected females. Maternal inheritance was close to 100%. Moreover, the new infection did not affect immature and adult survivorship, but it significantly reduced female fecundity and egg hatch rate. The results are discussed in relation to the potential use of the new Ae. albopictus-Wolbachia symbiotic association as a suitable system for the study and development of CI-based strategies for suppressing populations of this important pest and disease vector.


Asunto(s)
Aedes/microbiología , Culex/microbiología , Simbiosis , Wolbachia/fisiología , Animales , Femenino , Longevidad , Masculino , Reproducción , Wolbachia/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...